EDUCATION

Ph.D., Knowledge Engineering Group (KEG), Department of Computer Science and 2021.09-2024.12 Technology, Tsinghua University. Supervisors: Prof. Jie Tang.

M.Phil., School of Integrated Circuit, Tsinghua University. Supervisors: Prof. Tian-2016.09-2019.07 Ling Ren.

2012.08-2016.07 B. Eng., Electronic Packaging Technology, Xidian University.

RESEARCH INTERESTS

My researches focus on Mathematical Language Models and Graph Representation Learning. My research goal is to enhance the reasoning of Large Language Models (LLMs) and Multi-Modal Large Language Models (MLLMs) to solve complex mathematical and scientific problem-solving challenges.

- Mathematical reasoning in LLMs and MLLMs [MathGLM][MathGLM2][MathGLM-Vision]
- Scientific Reasoning Benchmark in MLLMs [VisScience]
- Graph Representation Learning [MCNS] [STAM] [RecNS] [BatchSampler] [TriSampler] [MixGCF]
- Vision Language Pretraining [ViLTA]

I have accomplished 12 papers, and have published 7 first/co-first authored papers in top-tier conferences and journals(such as 2 KDD, WWW, ICCV, AAAI, TKDE and TPAMI).

AWARD

- Huawei Scholarship, 2023
- Outstanding Thesis Award, Tsinghua University, 2019 (Top 3%)
- Outstanding Graduate of Beijing, 2019 (Top 3%)
- Candidate of Special Scholarship of Tsinghua University, 2018 (Top 30)
- National Scholarship, 2018 (Top 3%)
- 129 Scholarship of Tsinghua University, 2018 (Top 30)
- Outstanding Graduate of Xidian University, 2016
- National Encouragement Scholarship, 2015
- National Scholarship, 2014

PROFESSIONAL SERVICE

- PC Member for Conferences: WWW2023.
- Reviewer for Journals: TKDE.
- Reviewer for Conferences: ICLR2025, WWW2025, AAAI2025, WWW2024, WWW2023, KDD2023.

RESEARCH EXPERIENCE

VisScience: Multi-Modal Scientific Reasoning Benchmark

- Construct a comprehensive benchmark VisScience to evaluate multi-modal scientific reasoning across three disciplines: mathematics, physics, and chemistry.
- Collect 3,000 questions derived from K12 education, evenly distributed with 1,000 questions per discipline. Questions in VisScience cover 21 different topics and are divided into 5 difficulty levels to provide a wide range of topics within each discipline.
- Present a detailed evaluation of the performance of 25 representative MLLMs on scientific reasoning. These results highlight the strengths and limitations of MLLMs and suggest areas for future improvements.

MathGLM-Vision: Mathematical Multi-Modal Large Language Model

- Construct a fine-tuning dataset MathVL, based on which supervised fine-tuning (SFT) is performed on CogVLM-32B and CogVLM2 to develop a family of math MLLMs called MathGLM-Vision.
- Experiments show that 40% to 65% performance improvements are achieved on MathVista-GPS. In addition, the effectiveness of MathGLM-Vision is evaluated on the MathVL-test dataset.
- MathGLM-Vision not only surpasses their backbone models on specialized math tests, but also retains generalization capabilities in the field of general visual language understanding.

MathGLM2: Data-enhanced Mathematical Large Language Model

- The ability of other large language models to solve Chinese math problems is far lower than GPT-4. How to improve the mathematical reasoning ability of current large language models?
- Focus on using the core idea of Chain-of-Thought and self-trained scoring models to construct highquality mathematical data, and achieve slightly better results than GPT-4 on MathGLM2-6B.
- However, we found that the generalization ability of MathGLM2-6B is not outstanding, and it tends to show better performance on the trained dataset. GPT-4 has high generalization and shows the strongest performance on various types of math problems.

MathGLM: GPT Can Solve Math Problems Without a Calculator

- A common misconception is that large language models cannot accurately perform high-digit arithmetic operations, especially operations involving multiplication of more than 8 digits and operations involving decimals and fractions.
- This work aims to challenge this misconception. Leveraging the step-by-step strategy, the 2 billionparameter MathGLM model can accurately perform multi-digit arithmetic operations with an accuracy of almost 100%.
- The MathGLM-10B model trained with the step-by-step strategy can achieve performance close to GPT-4 on 5,000 Chinese mathematics test data.

ViLTA: Enhancing Vision-Language Pre-training through Textual Augmentation

- For masked language modeling (MLM), a cross-distillation method is proposed to generate soft labels to enhance the robustness of the model, thereby alleviating the problem of treating synonyms of masked words as negative samples in one-hot labels.
- For image-text matching (ITM), the current language encoder is utilized to synthesize hard negative samples according to the context of the language input to encourage the model to learn high-quality representations.
- ViLTA can achieve better performance on various visual language tasks, enhancing model robustness and accelerating model convergence.

PUBLICATION

Authored 12 research papers, with first-author credit on 7 CCF-A ranked publications; Accumulated over 2500 citations on Google Scholar.

- 1. **Zhen Yang***, Ming Ding*, Chang Zhou, Hongxia Yang, Jingren Zhou, Jie Tang. Understanding Negative Sampling in Graph Representation Learning. **KDD'20. (CCF A)**
- 2. **Zhen Yang**, Ming Ding, Xu Zou, Jie Tang, Bin Xu, Chang Zhou, Hongxia Yang. Region or Global? A Principle for Negative Sampling in Graph-based Recommendation. **TKDE'22. (CCF A)**
- 3. **Zhen Yang**, Ming Ding, Bin Xu, Hongxia Yang, Jie Tang. STAM: A Spatiotemporal Aggregation Method for Graph Neural Network-based Recommendation. **WWW'22.** (**CCF A**)
- 4. **Zhen Yang**, Tinglin Huang, Ming Ding, Yuxiao Dong, Zhitao Ying, Yukuo Cen, Yangliao Geng, Jie Tang. BatchSampler: Sampling Mini-Batches for Contrastive Learning in Vision, Language, and Graphs. **KDD'23. (CCF A)**
- 5. **Zhen Yang**, Shao Zhou, Yuxiao Dong, Jie Tang. TriSampler: A Better Negative Sampling Principle for Dense Retrieval. **AAAI'24. (CCF A)**
- Zhen Yang, Ming Ding, Tinglin Huang, Yukuo Cen, Junshuai Song, Bin Xu, Yuxiao Dong, Jie Tang. Does Negative Sampling Matter? A Review with Insights into its Theory and Applications. TPAMI'24 (CCF A).
- 7. Weihan Wang*, **Zhen Yang***, Bin Xu, Juanzi Li, Yankui Sun. ViLTA: Enhancing Vision-Language Pretraining through Textual Augmentation. **ICCV'23. (CCF A)**
- 8. Tinglin Huang, Yuxiao Dong, Ming Ding, **Zhen Yang**, Wenzheng Feng, Xinyu Wang, Jie Tang. Mixgcf: An improved training method for graph neural network-based recommender systems. **KDD'21. (CCF A)**
- 9. Zhen Yang, et al. GPT Can Solve Mathematical Problems Without a Calculator. (arXiv)
- 10. **Zhen Yang**, et al. MathGLM-Vision: Solving Mathematical Problems with Multi-Modal Large Language Model. (arXiv)
- 11. Zhihuan Jiang*, **Zhen Yang***, et al. VisScience: An Extensive Benchmark for Evaluating K12 Educational Multi-modal Scientific Reasoning. (arXiv)
- 12. GLM Team, Chatglm: A family of large language models from glm-130b to glm-4 all tools. (arXiv)

PERSONAL SKILLS

Languages & Frameworks: Python, C/C++; Pytorch, Tensorflow

Distributed Training and Inference Frameworks: Megatron, DeepSpeed; Slurm Job Scheduling System

REFERENCES

Prof. Jie Tang (PhD supervisor).

Department of Computer Science and Technology, Tsinghua University, China. jietang@tsinghua.edu.cn.

Prof. Tian-Ling Ren (PhD supervisor).

School of Integrated Circuit, Tsinghua University, China. RenTL@tsinghua.edu.cn.